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Abstract

In this paper, we test the assumption that diver-
sity in counterfactual explanations positively im-
pacts understanding and trust in a machine learning
model, finding limited support for this assumption.
Counterfactual explanations are a well-advocated
technique for machine learning explainability. A
counterfactual shows the closest possible world in
which an alternative decision would be produced.
Several researchers make a case for multiple and
diverse counterfactuals as a means to explain bet-
ter —and better understand—the decisions made
by machine learning models. We conduct a human-
subject experiment through Amazon Mechanical
Turk with 208 participants using task prediction
and qualitative scales to test these assumptions for
the credit scoring domain. Our results show that
having fewer (two) rather than more (four or eight)
counterfactuals or just a single counterfactual im-
proved understanding, and those who received a
high number of counterfactuals reported a prefer-
ence for fewer. Surprisingly, we find that diver-
sity had no positive impact on either understanding
or trust of our participants. These results call into
question the assumption that diverse counterfactu-
als are useful for understanding.

1 Introduction

The models powering contemporary systems for many high
stakes decisions, such as credit risk [Danenas and Garsva,
2015], resume to job matching [Osipovs, 2019], and pretrial
bail eligibility [Zavrsnik, 20201, can be complex and diffi-
cult to understand. Explainable Artificial Intelligence (XAI)
seeks to solve this through methods that provide human-
understandable explanations for Al decisions. There exist
several techniques for generating explanations [Adadi and
Berrada, 2018; Gilpin er al., 2018; Guidotti et al., 2018;
Linardatos et al., 2021], including feature-based [Ribeiro et
al., 2016], case-based [Lamy er al, 2019], and more re-
cently, counterfactual explanations [Wachter et al., 2017;
Russell, 2019; Ustun et al., 2019; Joshi et al., 2019; Pawel-
czyk et al., 2020; Looveren and Klaise, 2019].

Counterfactuals have a strong history of support in philo-
sophical and cognitive science [Byrne, 2019; Miller, 2019;
Miller, 2021], and we take the definition by Lewis [1973]
that a counterfactual is a “close possible world” that pro-
duces an alternate outcome for some decision. Existing lit-
erature focuses on developing effective technical solutions
for generating diverse counterfactuals [Poyiadzi et al., 2020;
Karimi et al., 2020a; Russell, 2019], but there has been
no or limited human-subject evaluation of the impact on
the number or diversity of counterfactuals on understand-
ing. Given the significance of understanding [Mothilal er al.,
2020] and having trust in these machine learning models, and
the ability of people to take effective action on available re-
course [Wachter et al., 2017; Ustun et al., 20191, it is impor-
tant to test the assumptions that underpin these methods.

In this paper, we undertake a human behavioural exper-
iment via Amazon Mechanical Turk with 208 participants
to investigate the impact of diversity of counterfactuals in
the credit scoring domain. In particular, we test the impact
of the diversity in terms of the number of counterfactuals,
and the number of features changed by a counterfactual (fea-
ture uniqueness) to (1) improve participants’ understanding
of machine learning models; and (2) an increase or decrease
the model’s trust. We found that:

1. counterfactual explanations improve understanding of
the model over a no-explanation baseline as measured
by a task prediction exercise, and did not impact trust;

2. a small number of counterfactuals (two) improved par-
ticipant understanding of the model more than larger
numbers (four and eight); and

3. importantly, the diversity of counterfactuals had no im-
pact on either understanding or perceived trust.

These results challenge the assumption that multiple, di-
verse counterfactuals are a good model for understanding.

2 Related Work

A counterfactual explanation describes a small change to fea-
ture values to change the outcome. Consider an example of a
counterfactual explanation for a loan default prediction clas-
sifier:

“An automated system predicted that you are likely
to default on a home loan because your annual in-



come of $56,000 is too low. If your annual in-
come was $70,000, the automated system would
have predicted that you are not likely to default.”

Counterfactual explanations described by Wachter et al.
[2017] build on this idea. They focus on the closest possi-
ble world, the smallest possible change to feature values to
change the outcome. Wachter et al. formalise this as follows.
Assume that we have a machine learning model, f. Given an
input z, the model predicts f(z) = y as the outcome. In this
context, a counterfactual explanation is a perturbation of the
input, x, to generate a different output 4’ = f(c) by f. This
has been formalised as follows:

arg min yloss(f(c),y) + d(z, c), (D
(&

where d(-, -) is a distance measure, f the classifier function,
¢ € C'is a counterfactual from a set of counterfactuals C
and v’ the classifier responses we desire, yloss pushes the
counterfactual c towards a different prediction than the origi-
nal instance, and d(z, ¢) keeps the counterfactual close to the
original instance.

However, a single counterfactual may not be the most valu-
able or insightful to the recipient in cases where the recipient
seeks recourse to an unfavourable decision [Wachter et al.,
2017; Russell, 2019; Karimi et al., 2020b]. Wachter et al.
[2017] discuss the obvious value from providing a diverse set
of counterfactuals — including more possible paths for action-
able recourse, the implicit knowledge gained when diversity
is present, as well as an assumed net increase in understand-
ing of the model [Mothilal ez al., 2020].

In addition to diversity, there are other properties desired
of counterfactuals explanations, such as validity, actionabil-
ity and sparsity [Wachter er al., 2017; Verma et al., 2020;
Karimi et al., 2020b]. However, in this paper, we focus only
on diversity.

2.1 Diverse Counterfactual Explanations

Wachter er al. [2017] called for diverse counterfactuals and
provided the basis for the distance functions that could fa-
cilitate the generation of diverse counterfactual explanations.
Russell [2019] proposed an integer programming technique
for generating diverse and coherent counterfactuals for clas-
sifications produced by linear models that use both continu-
ous and categorical data types. Russell leans on the opinion
shared by Wachter er al. that diverse counterfactuals help
laypeople understand decisions made by automated systems.
In terms of the distance function, d(-,-) Russell [2019] used
the weighted ¢; norm, that is, || - ||1,Map. This measure is ex-
pected to generate counterfactuals that are sparse and robust
to outliers [Wachter et al., 2017].

Recently, there has been an interest in using counterfac-
tual explanations to help users understand the deployed ma-
chine learning model or at least “guess” the decision bound-
ary [Mothilal er al., 2020]. Mothilal er al. provide several
metrics to measure the diversity of a set of counterfactuals, as
outlined below.

We can measure diversity by through determinantal point
processes (DPP), as follows:

dpp_diversity = det(K), 2)

where Kij = 1rgierey and dist(ci, c;) denotes a dis-

tance metric between the two counterfactual examples.
Another way to measure diversity is using the mean of the

distances between each pair of examples, as follows:

k-1 k
1
Diversity: A= C’i,f E E dist(c;c;) 3)
i=1 j=i+1

C is the set of k counterfactual examples. Furthermore,
Mothilal ez al. [2020] define different distance functions,
dist, for continuous or categorical features.

A third way to measure diversity is through the fraction of
features that are different between any two pairs of counter-
factual examples, as follows:

k—1

k
1
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where d is the number of input features and k£ is the number
of counterfactuals.

While there have been significant technical contributions
on generating diverse counterfactuals, the effects of diversity
and number of counterfactuals on model understanding and
trust have not been evaluated through human experiments.
This paper aims to fill this gap and reiterate the importance
of human-subject evaluations.

3 Experiment Design

While diverse counterfactuals may deliver on some capabili-
ties [Wachter et al., 2017], there is no empirical analysis on
how a user’s understanding of a model is impacted specif-
ically by the diversity of counterfactuals presented to them
or its effect on trust. These aspects are critical to adopting
machine learning systems and the likelihood of a recipient
understanding the machine learning model or using the infor-
mation provided to achieve recourse.

This section outlines an experimental study design to eval-
uate the effect of diverse counterfactual explanations. Our
study tests two hypotheses: H1) diverse counterfactuals im-
prove human understanding of a model and that there is some
good range of them to be useful; H2) diverse counterfactuals
improve the trust elicited from the predictions of a machine
learning model. The intuition behind these hypotheses is that
having a diverse set of counterfactuals provides people with
a wider range of ‘behaviours’ to summarise the model, and
having some small collection that does not overwhelm users
improves understanding and trust.

3.1 Diversity Metrics

In this paper, we test two diversity metrics, that is, number
of counterfactuals and feature uniqueness. One is an ex-
isting metric and we propose a new metric inspired by the
Count-Diversity metric discussed earlier.



Our first measure of diversity is the number of counter-
factuals, N. In much of the existing literature, diversity is
the number of counterfactuals generated according to a given
distance measure, dist function. That is, having diverse coun-
terfactuals is presenting several paths to the alternative clas-
sification. In our work, the NV diverse counterfactual expla-
nations are generated using Russell’s method, which uses the
weighted ¢; norm for the distance function, || - ||1, mMaD.

Our second measure of diversity, D, is based on feature
uniqueness. This diversity metric assesses how significantly
different the counterfactuals are in terms of the number of
features they modify. To compute D, we count the number of
unique features modified by a counterfactual explanation, rel-
ative to the set of counterfactuals. Formally, feature unique-
ness, K, of a set counterfactuals C is defined as:

B | Ucec Unique(c)|
| Ueec FeaturesChanged(c)|

K

Unique(c) = {c; € c|v(cj) # v(z;)A
Ad € O\ {c} -v(c)) # v(z;)}

where x is the original instance, ¢ € C is a counterfactual
from the set of IV counterfactuals, C, c; is the j”‘ feature of
an input, and v(c;) gives the value of the j* feature of in-
stance c. Unique(c) gives the set of features that only coun-
terfactual ¢ € C modifies (compared to all other counterfac-
tuals in C). FeaturesChanged(c) gives the set of all fea-
tures modified by the counterfactual ¢ € C relative to the
initial instance:

FeaturesChanged(c) = {c; € ¢ | v(cj) # v(z;)}

Feature uniqueness, K, is the number of unique modified
features over all counterfactuals, normalised by the total num-
ber of features (unique and not unique) targeted by all coun-
terfactuals. We note that our feature uniqueness measure is
similar to the sparsity measure introduced in Mothilal et al.
[2020] that captures the number of features that are differ-
ent, and the feature diversity in Smyth and Keane [2021] that
measures the percentage of features that are different. Our
measure is different from Count-Diversity of Mothilal
et al. and the feature diversity from Smyth and Keane. They
both consider the number of features that are change between
pairs of counterfactuals while we propose a stricter definition
that also insists the features must be unique within the entire
set of counterfactuals.

Using the feature uniqueness, we separate explanations
categorically into high and low diversity. We acknowledge
that the difference between two counterfactuals can be ex-
pressed in several ways, and as such, we use a simple tech-
nique of calculating feature uniqueness to determine D. We
use this straightforward measure rather than fully exploring
the effects of and best definition of the difference between
counterfactuals. We define the diversity D(C) of a set of
counterfactuals C' as:

D(C) :{ tow)

for K < 0.67
high,

for K > 0.8

Our experiment excludes any data points between 0.67 and
0.8 to allow for a clear difference in their feature representa-
tion.

Together, these two metrics, /N and D, fundamentally cap-
ture the essence of existing diversity metrics, that is, diversity
by providing multiple counterfactual explanations and diver-
sity along the lines of the number of features that need to
change to arrive at an alternative decision.

3.2 Human Study

We use FICO’s Home Equity Line of Credit' (HELOC) data
set provided for their Explainable Machine Leaning Chal-
lenge®. We train a logistic regression model (prediction ac-
curacy of 73%) and generate our counterfactuals using the
integer programming technique proposed by Russell [2019].
We then visualise these counterfactuals in a table to be pre-
sented to participants alongside the applicant feature set. We
frame the questions asked to participants as if they are an in-
termediary (e.g. a loan officer) between the model producing
decisions, and the applicant who requested the product.

Our study design is inspired by techniques discussed by
Hoffman et al. [2019]. We use task prediction (predicting the
result produced by a model given some input) as a proxy for
insight into the mental model formed by an explainee. In task
prediction, participants are first trained on explanations and
then are asked to predict outputs of the model on unlabelled
examples. A higher success rate indicates a more sound in-
terpretation of the decision process used by the model. To
identify whether there is any change in perceived trust elicited
by the diversity of counterfactuals, we use the 5-point Trust
Scale based on the Cahour and Forzy’s [2009] and Jian et al.
[2000]’s trust scales.

Our experiment uses a human-subject survey on the
Qualtrics® platform. Before the experiment, we received
ethics approval from our institution. The survey had three
phases: an introductory phase (explained in detail later), a
training phase and a testing phase. We seek to build the par-
ticipants’ mental model in the training phase by presenting
them with HELOC product applicants and then test this men-
tal model in the testing phase. The applicants were presented
individually as a table showing the features and their values
used by the classifier.

A total of 251 participants were recruited through Ama-
zon Mechanical Turk, a crowd-sourcing platform popular for
obtaining data for human-subject experiments [Buhrmester et
al., 2011]. The opportunity to join the study is restricted to
those with over 10,000 HITs completed with at least 95%
acceptance rate. The survey presented to the participant
includes some simple qualifying questions to filter out au-
tomated software respondents. Participants were from the
United States, United Kingdom, Canada, Australia and New
Zealand. Though we did not collect participant demograph-
ics for our sample, we provide the details of who might have
participated in the study using the information about the pop-
ulation of MTurkers, provided via the mturk-tracker online

'FICO xML Challenge found at community.fico.com/s/xml

Zhttps://community.fico.com/s/explainable-machine-learning-challenge

*https://www.qualtrics.com


https://community.fico.com/s/explainable-machine-learning-challenge

service* developed by Difallah et al. [2018]. The population
from which our sample was drawn had approximately 72%
participants from the United States of America and 28% from
the four countries. There were around 60% males and 40%
females. In terms of age, 1% were between 60-70 years old,
5% were between 50-60, 10% between 40-50, 19% between
30-40, and 65% between 18-30 years.

Procedure: We test the number of counterfactuals IV at in-
tervals of 0, 1, 2, 4, and 8, where N € {0,1} are the two
baselines that present participants no counterfactuals and one
counterfactual respectively. These baselines are included to
grade performance of a participant who is not exposed to any
counterfactuals and to only one counterfactual. We also test
two levels of diversity, D: low and high (as explained ear-
lier). This leads to a total of eight conditions (note that diver-
sity is zero for zero and one counterfactual(s)).

The survey was divided into three phases, introductory,
training, and testing. In the first phase, the participants first
received a plain language statement and a consent form. If the
participants agreed to all items in the consent form, they were
asked a question to filter out automated agents or bots. If the
bot-check question was answered correctly, we provided the
participants a tutorial. In the tutorial, we walked the partic-
ipants through what they were required to do with a sample
applicant record, what types of questions we were going to
ask them and what types of responses we were expecting.
Following the tutorial, the participants were randomly allo-
cated to one of the eight conditions to start the training phase.
Participants were paid USD $8.5 per hour for participating in
the study and a bonus of 20 cents for every correct answer.

In the training phase, we presented the participants with
eight different applicant records from the HELOC data set.
Four of these applicants were approved, and the other four
had their loans denied. Participants in all eight conditions
were exposed to the same eight applicants. For each appli-
cant, we present the 23 applicant features, F', their values, and
the classification produced by the model. Alongside the val-
ues used by the model, we present N counterfactuals. These
counterfactuals are presented in a sparse table where values
are only present in cells for features that require a change.
Otherwise, a hyphen denotes no change to the feature value.
We present a partial example in Table 1 that shows an ap-
proved applicant with two counterfactuals. The first coun-
terfactual requires changing one feature (External Risk Esti-
mate), and the second requires changing two.

Existing research [Chi et al., 1994] suggests that self-
explanation improves understanding. Therefore, we encour-
aged the participants to interpret the features and their impact
on the classification by prompting them with the following
question:

The applicant has asked what would have needed
to be different to receive the alternative outcome.
Please provide a description of why the applicant
received the outcome they did.

In the test phase, we assessed the participant’s understand-
ing of, trust in, and overall satisfaction with the model based

*http://demographics.mturk-tracker.com/#/gender/all

on their interaction with the model and the counterfactual ex-
planations seen during the training phase. We present the par-
ticipants with eight new applicants. Participants in all eight
conditions were exposed to the same eight applicants. We
omit the classification produced by the model as well as any
counterfactuals. The participant is requested to complete two
prediction tasks, TP-A and TP-B. TP-A has the participant
provide their own prediction of what classification the model
would produce for the applicant. TP-B has the participant
select the set of features they believe are most significant in
changing the model’s outcome, should their values change.
We ask that the participants select these significant features
to invoke a counterfactual thought process in the participant.

Once TP-A and TP-B are completed for each of the eight
test applicants, participants outside of the baseline group
complete a Likert scale indicating their preference for more
or fewer counterfactuals. We ask they base this preference
on whether they believe they would have performed better
on the prediction tasks. We refer to this as their “prefer-
ence for diversity”. All participants are then presented with
a trust scale [Hoffman er al., 2019] regarding the underly-
ing model used in producing the classifications shown in the
training phase of the experiment. Concerning trust, we ask
the participants the following four questions (shown in Fig-
ure 3 defined by Hoffman et al. [2019] on a 5-point Likert
scale (Completely disagree (1), Somewhat disagree (2), Neu-
tral (3), Somewhat agree (4), Completely agree (5)):

1. What is your confidence in the model? Do you have a
feeling of trust in it?;

2. Are the actions of the model predictable?;
3. Is the model reliable? Do you think it is safe?;
4. Is the model efficient at what it does?

Measures: To evaluate task performance for a participant
p, we consider their TP-A and TP-B results. TP-A produces
a simple measure of their success as a prediction score, SP.
This value is simply the number of correct predictions out
of the eight test participants. TP-B produces a total feature
score:

Total FeatureScore(p) = Z FeatureScore(pa), (5)
acA

where

FeatureScore(a) = E:J]EFF/]%‘ (6)
This is the sum of the individual feature scores for the set
of eight presented applicants A. The feature score for each
applicant a is the summation of the weights w of the features
F” selected by the participant for individual classification nor-
malised by the number of features selected. This simple mea-
sure allowed us to judge whether participants were selecting
highly weighted features.

When evaluating trust, we consider both the participant’s
preference for diversity and their answers to the trust scale.
These values are simple means to identify whether there is
any significant change in result depending on the number or
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Prediction: Good

CF1 CEF2

History  External Risk Estimate
Length of Credit History

Time Since Most Recent Line of Credit Opened

Average Line of Credit History Length

78 68 -
13 years 11 months - -
0 years 0 months - -
5 years 6 months - -

Total No. Lines of Credit 56 - -
No. Lines of Credit Opened in Last 12 Months 3 - 5
Percentage of Lines of Credit that are Instalment Loans 29 - 37

Table 1: Example applicant data presented to participants. This example shows only some of the 23 features and two counterfactuals.

diversity presented. We performed the DunnTest>, which per-
forms the post-hoc pairwise Kruskal-Wallis test with the p-
values adjusted with the Bonferroni method.

4 Results

Before performing any analysis, we undertook a manual re-
view of answers to the open-ended question from the 251 par-
ticipants in phase one to filter those who may not have been
paying attention. We removed those participants who pro-
vide nonsensical answers such as random strings of words
or content totally irrelevant to the experiment (e.g writing
about a completely different problem). After this process,
we were left with 208 participants, and all results are based
on these remaining 208 participants. The 208 participants
were distributed into eight conditions as follows (number of
counterfactuals-diversity: number of participants): 0 coun-
terfactuals: 39 participants; 1: 25, 2-H: 30, 2-L: 27, 4-H:
21, 4-L: 22, 8-H: 24, 8-L: 20. Participants took on average
33.3 minutes (SD = 12.7).

We present our null and alternative hypotheses for H1 -
Ho @ py = po = pa = pg; Hi = pup < fig2,4,8y and H2
-Hy :mp=m =17 H =71 < T{h,1}- We condition
these on the average scores (u) of TP-A and TP-B and the
trust score (7) respectively, and the baselines are zero and
one counterfactual explanation. We reject the null hypothesis
if we identify a significant difference in performance for an
interval of number or diversity.

Cond. Avg Feature Score  Avg Prediction Score

0 2.39 (SD=0.79) 5.64 (SD=0.90)
1 3.74 (SD=1.34) 5.60 (SD=1.29)
2H 3.61 (SD=1.20) 6.00 (SD=1.02)
2L 4.21 (SD=1.28) 6.30 (SD=0.99)
4H 3.36 (SD=1.24) 5.62 (SD=1.16)
4L 2.81 (SD=0.87) 5.64 (SD=1.53)
8H 2.37 (SD=0.79) 5.46 (SD=1.53)
8L 2.34 (SD=0.70) 5.55 (SD=1.43)

Table 2: Average Feature and Prediction Scores by Condition

4.1 Task Prediction

Table 2 shows the averages of TP-A (Prediction Score) and
TP-B (Feature Score) together with the standard deviations.

>https://rdrr.io/cran/DescTools/man/DunnTest.htm]
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Figure 1: Quartiles and median scores for participant
performance on TP-A: accuracy of prediction.
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Figure 2: Quartiles and median scores for participant
performance on TP-B: feature selection score.

Figure 1 shows participant performance in TP-A, that is,
the ability of the participants to correctly state the classifica-
tion produced by the machine learning model for the eight test



applicants. A Kruskal Wallis test revealed a not-significant
effect of the number of counterfactuals on the mean perfor-
mance of TP-A (p = 0.09) and diversity (p = 0.43). Kruskal-
Wallis pair-wise tests confirm that there was no significant
difference between the baseline and other groups. We also
performed tests on the results for the number of times a par-
ticipant selected “not sure” as an answer while completing
TP-A and find no significance in the difference for number
(p = 0.09) and diversity (p = 0.73). These results show that
participants’ ability to judge the classifier’s decision bound-
ary is not significantly improved by having more counterfac-
tual explanations. In fact, we observed the best performance
with only 2 counterfactual explanations.

Figure 2 shows participant performance in TP-B, that is,
the ability of the participants to select the set of features that
are most significant in changing the model’s outcome. A
Kruskal Wallis test revealed a significant effect of the num-
ber of counterfactuals on the mean performance of TP-B
(x%(2) = 39.52,p < 0.001,7*> = 0.26), but not for diver-
sity (p = 0.90). Pair-wise tests (DunnTest) revealed a signif-
icant difference between feature scores for all combinations
(p < 0.01) (uo = 2.39 (SD = 0.79), o = 3.74(SD =
1.33), u2 = 3.89 (SD = 1.26), g = 3.08 (SD = 1.09),
us = 2.35 (SD = 0.74)) except for the following four pairs:
when comparing N = 0 with N = 4 and N = 8, and when
comparing N = 1 with N = 2 and N = 4. While results
indicate a clear improvement in performance for those in the
N = 2 group over the baseline of N = 0. The difference
between the pair N = 4 and N = 8§ and the pair N = 2
and N = 8 indicates once again that there is a point where
an increase in NN reduces performance and can make it com-
parable to the baseline. We point out the importance of this,
given the N = 0 group having significantly more challenge
in identifying features given no counterfactuals.

The above results for TP-A and TP-B lead to rejecting the
null hypothesis (Hyp) for our H1. This means that more di-
verse counterfactuals based on the £1-distance (i.e. ||-||1,MaD)
and our feature uniqueness measure did not help participants
improve their understanding of the machine learning model.

4.2 Trust

Our trust scale asked participants four questions [Cahour and
Forzy, 2009]. Kruskal-Wallis tests did not identify any signif-
icance for number of counterfactuals or the diversity in any
of the groups. The mean score of each found that answers for
all questions generally indicate some positive level of trust in
the model regardless of number or diversity (see Figure 3 for
analysis of the responses based on the level of diversity. The
results are similar for the number of counterfactuals and with
baseline of 1 counterfactual). The results show that more di-
verse counterfactuals has not impact on trust in the model.

4.3 Preference for Number of Counterfactuals

We also asked the participants if they wanted more or fewer
counterfactuals (Figure 4). Kruskal-Wallis tests revealed
significance for the number of counterfactuals (x?(3) =
16.86,p < 0.001,7?> = 0.08). The eight counterfactuals
group preference leans toward fewer counterfactuals while
those presented with 2 and 4 prefer roughly the same number

Q1 What is your confidence in the model? Do you
have a feeling of trust in it?

L 17% 19% 64%
H | 15% 20% 65%
1 24% 12% 64%
0. 17% 25% 58%

Q2 Are the actions of the model predictable?

L| 6% 17% 77%
H| 1% 13% 76%
1 12% 16% 72%
0] 8% 8% 83%
Q3 Is the model reliable? Do you think it is
safe?
L | 13% 26% 61%
H| 15% 21% 64%
1 24% 8% 68%
0 8% 33% 58%

Q4 Is the model efficient at what it does?

L] 12% 14% 74%
H 12% 12% 76%
1] 16% 13% 72%
01 17% 17% 67%
100 50 0 50 100
Percentage
Response Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 3: Trust scale based on diversity. L=low, H-high, and two
baselines = zero and one counterfactuals

of explanations. The four counterfactuals groups leaned very
slightly towards fewer explanations. The results with regards
to TP-A and TP-B indicate that presenting two counterfactu-
als in our case already hits a threshold for “more is better”.
This shows that those in group 4 and 8'’s intuition of receiv-
ing fewer counterfactuals explanations about improving their
performance are not unfounded.

The number of alternative feature sets presented
to me should be...
T

8 61% 27% 1%

100 50 0 50 100
Percentage

Response Much lower Lower About the same Higher Much higher

Figure 4: Preference for number of counterfactuals

4.4 Limitations

The primary limitation of this work so far is that we exper-
imented with a single domain of credit scoring. More ex-
periments are needed in other domains to comprehend the
impact of diverse counterfactuals fully. However, even just
the single experiment is a counterexample against the general
assumption that diversity improves understanding. Further,
we used non-expert participants on a task prediction domain,
while we may find different results using loan officers mak-
ing credit decisions, or in other domains. Despite this, it is
important to note that our participants are representative of



loan applicants in this scenario. The results presented in this
paper are limited to counterfactuals generated by considering
the ¢1-distance. There are other methods, such as [Mothilal
et al., 2020] and [Poyiadzi et al., 2020]. Other diversity mea-
sures or other metrics may elicit better understanding and im-
proved trust. In terms of the trust level, we measured the per-
ceived trust through limited exposure to the machine learning
model. We do not know how the trust level may change with
many applicants and exposure to the decisions over time, nor
whether trust as reliance would yielf conflicting results.

Having highlighted the above limitations, we note that our
results suggest that more metrics, including those on diver-
sity, need to be sufficiently validated to assess that the coun-
terfactuals will have some utility for the intended users. How-
ever, we expect that other diversity measures would have lim-
ited impact, given that exposure to four or more counterfac-
tuals was not useful for our participants.

5 Conclusion

This paper explored the impact that diverse counterfactuals
have on elicited understanding and trust in a machine learning
model. We found that two counterfactuals mildly impacted
understanding while presenting participants with eight coun-
terfactuals did not provide understanding, potentially due to
increased cognitive load that hindered their understanding.
We did not find a link between diversity and an improvement
in understanding. Further, the number of counterfactuals and
feature uniqueness had no impact on trust in the underlying
model.

While these results call into question the assumption that
multiple diverse counterfactuals improve understanding, it is
important to note that there are other reasons why having mul-
tiple diverse counterfactuals may be desirable. In particularly,
diverse counterfactuals could be important for actionability
[Wachter et al., 2017], as giving a small set of or less diverse
counterfactuals may lead to situations in which all counter-
factual states are infeasible.
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